Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Country
Keywords
Waste Package Neutron Absorber, Thermal Shunt, and Fill Gas Selection Report
Waste Package Neutron Absorber, Thermal Shunt, and Fill Gas Selection Report
Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package
Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package
Data Qualification Report: Mineralogy Data for Use on the Yucca Mountain Project
Data Qualification Report: Mineralogy Data for Use on the Yucca Mountain Project
Intact and Degraded Mode Criticality Calculations for the Codisposal of ATR Spent Nuclear Fuel in a Waste Package
Intact and Degraded Mode Criticality Calculations for the Codisposal of ATR Spent Nuclear Fuel in a Waste Package
SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 3-Surry Unit 1 Cycle 2
SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 3-Surry Unit 1 Cycle 2
Supplement to the Disposal Criticality Analysis Methodology
Supplement to the Disposal Criticality Analysis Methodology
Screening Analysis of Criticality Features, Events, and Processes for License Application
Screening Analysis of Criticality Features, Events, and Processes for License Application
Preclosure Criticality Analysis Process Report
Preclosure Criticality Analysis Process Report
The preclosure criticality analysis process described in this technical report provides a systematic approach for determining the need for criticality controls and for evaluating their effectiveness during the preclosure period of the Monitored Geologic Repository at Yucca Mountain, Nevada.
EQ6 Calculation for Chemical Degradation of Pu-Ceramic Waste Packages: Effects of Updated Materials Composition and Rates
EQ6 Calculation for Chemical Degradation of Pu-Ceramic Waste Packages: Effects of Updated Materials Composition and Rates
The Monitored Geologic Repository (MGR) Waste Package Operations (WPO) of the Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of Pu-ceramic waste forms. The Pu- ceramic (Refs. 1 and 2) is designed to immobilize excess plutonium from weapons production, and has been considered for disposal at the potential Yucca Mountain site.
Technical Evaluation Report on the Content of the U.S. Department of Energy's Yucca Mountain Repository License Application
Technical Evaluation Report on the Content of the U.S. Department of Energy's Yucca Mountain Repository License Application
This “Technical Evaluation Report on the Content of the U.S. Department of Energy’s Yucca Mountain License Application; Postclosure Volume: Repository Safety After Permanent Closure” (TER Postclosure Volume) presents information on the NRC staff’s review of DOE’s Safety Analysis Report (SAR), provided on June 3, 2008, as updated by DOE on February 19, 2009. The NRC staff also reviewed information DOE provided in response to NRC staff’s requests for additional information and other information that DOE provided related to the SAR.
Nuclear Criticality Calculations for the Wet Handling Facility
Nuclear Criticality Calculations for the Wet Handling Facility
The purpose of this calculation is to apply the process described in the TDR-DS0-NU-000001 Rev. 02, Preclosure Criticality Analysis Process Report (Ref. 2.2.25) to aid in establishing design and operational criteria important to criticality safety and to identify potential control parameters and their limits important to the criticality safety of commercial spent nuclear fuel (CSNF) handling operations in the Wet Handling Facility (WHF)
MOX Spent Nuclear Fuel and LaBS Glass for TSPA-LA
MOX Spent Nuclear Fuel and LaBS Glass for TSPA-LA
This analysis provides information necessary for total system performance assessment (TSPA) for the license application (LA) to include the excess U.S. Department of Energy (DOE) plutonium in the form of mixed oxide (MOX) spent nuclear fuel and lanthanide borosilicate (LaBS) glass. This information includes the additional radionuclide inventory due to MOX spent nuclear fuel and LaBS glass and the analysis that shows that the TSPA models for commercial spent nuclear fuel (CSNF) and high-level waste (HLW) degradation are appropriate for MOX spent nuclear fuel and LaBS glass, respectively.
Saturated Zone In-Situ Testing
Saturated Zone In-Situ Testing
The purpose of this scientific analysis is to document the results and interpretations of field experiments that test and validate conceptual flow and radionuclide transport models in the saturated zone (SZ) near Yucca Mountain, Nevada. The test interpretations provide estimates of flow and transport parameters used in the development of parameter distributions for total system performance assessment (TSPA) calculations.
CRC Reactivity Calculations for McGuire Unit 1
CRC Reactivity Calculations for McGuire Unit 1
The purpose of this calculation is to document the McGuire Unit 1 pressurized water reactor (PWR) reactivity calculations performed as part of the commercial reactor critical (CRC) evaluation program. CRC evaluation reactivity calculations are performed at a number of statepoints, representing reactor start-up critical conditions at either beginning of life (BOL), beginning of cycle (BOC), or mid-cycle when the reactor resumed operation after a shutdown.
Westinghouse MOX SNF Isotopic Source
Westinghouse MOX SNF Isotopic Source
The purpose of this calculation is to develop an estimate of the isotopic content as a function of time for mixed oxide (MOX) spent nuclear fuel (SNF) assemblies in a Westinghouse pressurized water reactor (PWR). These data will be used as source data for criticality, thermal, and radiation shielding evaluations of waste package (WP) designs for MOX assemblies in the Monitored Geologic Repository (MGR).
Initial Waste Package Probabilistic Criticality Analysis: Multi-Purpose Canister With Disposal Container (TBV)
Initial Waste Package Probabilistic Criticality Analysis: Multi-Purpose Canister With Disposal Container (TBV)
This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide an assessment of the present waste package design from a criticality risk standpoint. The specific objectives of this initial analysis are to:
1. Establish a process for determining the probability of waste package criticality as a function of time (in terms of a cumulative distribution function, probability distribution function, or expected number of criticalities in a specified time interval) for various waste package concepts;
CRC Depletion Calculations for Crystal River Unit 3
CRC Depletion Calculations for Crystal River Unit 3
The purpose of this calculation is to document the Crystal River Unit 3 pressurized water reactor (PWR) fuel depletion calculations performed as part of the commercial reactor critical (CRC) evaluation program. The CRC evaluations support the development and validation of the neutronics models used for criticality analyses involving commercial spent nuclear fuel in a geologic repository.
DOE Yucca Implementation Letter
DOE Yucca Implementation Letter
Letter from the Congress of the United States House of Representatives, Committee on Energy and Commerce.
CRC Depletion Calculations for McGuire Unit 1
CRC Depletion Calculations for McGuire Unit 1
The purpose of this calculation is to document the McGuire Unit 1 pressurized water reactor (PWR) fuel depletion calculations performed as part of the commercial reactor critical (CRC) evaluation program. The CRC evaluations support the development and validation of the neutronics models used for criticality analyses involving commercial spent nuclear fuel in a geologic repository.
Criticality Model
Criticality Model
The Disposal Criticality Analysis Methodology Topical Report (YMP 2003) presents the methodology for evaluating potential criticality situations in the monitored geologic repository. As stated in the referenced Topical Report, the detailed methodology for performing the disposal criticality analyses will be documented in model reports. Many of the models developed in support of the Topical Report differ from the definition of models as given in the Office of Civilian Radioactive Waste Management procedure AP-SIII.10Q, Models, in that they are procedural, rather than mathematical.
Report to Congress on Reassessment of the Civilian Radioactive Waste Management Program
Report to Congress on Reassessment of the Civilian Radioactive Waste Management Program
The success of the Civilian Radioactive Waste Management Program of the U.S.
Department of Energy (DOE) is critical to U.S. ability to manage and dispose of
nuclear waste safely--and to the reestablishment of confidence in the nuclear energy
option in the United States. The program must conform with all applicable standards
and, in fact, set the example for a national policy on the safe disposal of radioactive
waste.
The Secretary of Energy has recently completed an extensive review of the
Nuclear Waste Policy Act (Section 112) - Environmental Assessment, Yucca Mountain Site, Nevada Research and Development Area, Nevada, Volume 1
Nuclear Waste Policy Act (Section 112) - Environmental Assessment, Yucca Mountain Site, Nevada Research and Development Area, Nevada, Volume 1
By the end of this century, the United States plans to begin operating the first geologic repository for the permanent disposal of commercial spent nuclear fuel and high-level radioactive Waste. Public Law 97-425, the Nuclear waste Policy Act of 1982 (the Act), specifies the process for selecting a repository site, and constructing, operating, closing, and decommissioning the repository.
Probabilistic External Criticality Evaluation (SCPB: N/A)
Probabilistic External Criticality Evaluation (SCPB: N/A)
This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development (WPD) department to provide a probabilistic evaluation of the potential for criticality of fissile material which has been transported from a geologic repository containing breached waste packages of commercial spent nuclear fuel (SNF). This analysis is part of a continuing investigation of the probability of criticality resulting from the emplacement of spent nuclear fuel in a geologic repository.
Abstraction of Drift Seepage
Abstraction of Drift Seepage
This model report documents the abstraction of drift seepage, conducted to provide seepage relevant parameters and their probability distributions for use in Total System Performance Assessment for License Application (TSPA-LA). Drift seepage refers to the flow of liquid water into waste emplacement drifts.