slides - Generic Issue Management--An Idea Taking Flight
slides - Generic Issue Management--An Idea Taking Flight
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
This evaluation is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide analyses of disposal of aluminum (AI)-based Department of Energy-owned research reactor spent nuclear fuel (DOE-SNF) in a codisposal waste package with five canisters of high-level waste (HLW). The analysis was performed in sufficient detail to establish the technical viability of the Al-based DOE-SNF codisposal canister option.
This report presents a formal analysis of the five sites nominated as
suitable for characterization for the first repository; the analysis is based
on the information contained or referenced in the environmental assessments
that accompany the site nominations (DOE, 1986a-e). It is intended to aid in
the site-recommendation decision by providing insights into the comparative
advantages and disadvantages of each site. Because no formal analysis can
account for all the factors important to a decision as complex as recommending
The Monitored Geologic Repository Waste Package Operations of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Training, Research, Isotopes, General Atomics (TRIGA) reactor (Ref. 1). The TRIGA SNF has been considered for disposal at the potential Yucca Mountain site.
The Monitored Geologic Repository (MGR) Waste Package Department of the Civilian Radioactive Waste Management System Management & Operating contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Shippingport Light Water Breeder Reactor (LWBR) (Ref. 1). The Shippingport LWBR SNF has been considered for disposal at the potential Yucca Mountain site.
The purpose of this activity is to develop a representative “limiting” axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to criticality. The effect that the low burnup regions near the ends of spent fuel have on system reactivity is termed the “end-effect”. This calculation will quantify the end-effects associated with Pressurized Water Reactor (PWR) fuel assemblies emplaced in a hypothetical 21 PWR waste package.
The "Summary Report of Commercial Reactor Criticality Data for McGuire Unit 1" contains the detailed information necessary to perform commercial reactor criticality (CRC) analyses for the McGuire Unit 1 reactor.
This report, Summary Report of Laboratory Critical Experiment Analyses Performed for the Disposal Criticality Analysis Methodology, contains a summary of the laboratory critical experiment (LCE) analyses used to support the validation of the disposal criticality analysis methodology.
The purpose of this calculation is to estimate the probability of criticality in a pressurized water reactor (PWR) uncanistered fuel waste package during the postclosure phase of the repository as a function of various waste package material, loading, and environmental parameters. Parameterization on the upper subcritical limit that is used to define the threshold for criticality will also be performed. The possibility of waste package misload due to human or equipment error during preclosure is also considered in estimating the postclosure criticality probability.
The objective of this analysis is to characterize the criticality safety aspects of a degraded Department of Energy spent nuclear fuel (DOESNF) canister containing Masachusetts Institute of Technology (MIT) or Oak Ridge Research (ORR) fuel in the Five Pack defense high level waste (DHLW) waste package to demonstrate concept viability related to use in the Minded Geologic Disposal System (MGDS) environment for the postclosure time frame.
The purpose of this analysis is to document Waste Package Development Department (WPPD) MCNP evaluations of benchmark solution Laboratory Critical Experiments (LCE's). The objective of this analysis is to quantify the ability of the MCNP 4A (Reference 5.4) code system to accurately calculate the effective neutron multiplication factor (keff) for various measured critical (i.e., keff=1.0) configurations.
This report presents one of the analyses that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), referred to in this report as the biosphere model. Biosphere Model Report (BSC 2004 [DIRS 169460]) describes the details of the conceptual and mathematical biosphere models and the required input parameters. The biosphere model is one of a series of process models supporting the postclosure total system performance assessment (TSPA) for the Yucca Mountain repository.
This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development (WPD) department to describe the latest version of the probabilistic criticality analysis methodology and its application to the entire commercial waste stream of commercial pressurized water reactor (PWR) spent nuclear fuel (SNF) expected to be emplaced in the repository. The purpose of this particular application is to evaluate the 21 assembly PWR absorber plate waste package (WP) with respect to degraded mode criticality performance.
The purpose of this calculation is to document the Three Mile Island Unit 1 pressurized water reactor (PWR) fuel depletion calculations performed as part of the commercial reactor critical (CRC) evaluation program. The CRC evaluations support the development and validation of the neutronics models used for criticality analyses involving commercial spent nuclear fuel in a geologic repository.
As part of the Mined Geologic Disposal System Waste Package Development design activities, it has been determined that it may be beneficial to add material to fill the otherwise free spaces remaining in waste package after loading high-level nuclear waste. The use of filler material will benefit criticality control in spent nuclear fuel waste packages, by the moderator displacement method.
In the development of a methodology to account for exposure effects on the reactivity of spent Boiling Water Reactor (BWR) fuel in the proposed Monitored Geologic Repository (MGR) at Yucca Mountain, the accuracy of the methods used to predict the inventories of fissile and fissionable nuclides as well as neutron poisons present in the spent fuel must be established. One aspect ofthis confirmatory effort is accomplished by performing benchmark problems for known in-reactor critical configurations - Commercial Reactor Criticals (CRCs).
The purpose of this calculation is to develop axial profiles for estimating the axial variation in burnup of a boiling water reactor (BWR) assembly spent nuclear fuel (SNF) given the average burnup of an assembly. A discharged fuel assembly typically exhibits higher burnup in the center and lower burnup at the ends of the assembly. Criticality safety analyses taking credit for SNF burnup must account for axially varying burnup relative to calculations based on uniformly distributed assembly average burnup due to the under-burned tips.
The purpose of this analysis is to evaluate the types of defects or imperfections that could occur in a waste package or a drip shield and potentially lead to its early failure, and to estimate a probability of undetected occurrence for each type. An early failure is defined as the through-wall penetration of a waste package or drip shield due to manufacturing or handling-induced defects, at a time earlier than would be predicted by mechanistic degradation models for a defect-free waste package or drip shield.
The purpose of this calculation is to determine the required minimum burnup as a function of initial pressurized water reactor (PWR) assembly enrichment that would permit loading of fuel into the 21 PWR waste package (WP), as provided for in QAP-2-0 Activity Evaluation, Perform Criticality, Thermal, Structural, & Shielding Analyses (Reference 7.1).
There are more than 250 forms of U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF). Due to the variety of the spent nuclear fuel, the National Spent Nuclear Fuel Program (NSNFP) has designated nine representative fuel groups for disposal criticality analyses based on fuel matrix, primary fissile isotope, and enrichment. Fast Flux Test Facility (FFTF) fuel has been designated as the representative fuel for the mixed-oxide (MOX) fuel group which is a mixture of uranium and plutonium oxides.
The purpose of this report is to <,locument the sensitivity of the drift-scale thermal-hydrologic- chemical (THC) seepage model (SNL 2007 [DIRS 177404]) to heterogeneities in permeability and capillarity, which could affect predicted fluxes and chemistries of water and gases seeping into the emplacement drifts. This report has been developed following Technical Work Plan for: Revision of Model Reports for Near-Field and In-Drift Water Chemistry (SNL 2007 [DIRS 179287]).
The "Summary Report of Commercial Reactor Criticality Data for Crystal River Unit 3" contains the detailed information necessary to perform commercial reactor criticality (CRC) analyses for the Crystal River Unit 3 (CR3) reactor.
Gentlemen,
In accordance with the charter of the Blue Ribbon Commission on America's Nuclear Future and as the Secretary's designee, I approve your request to establish an ad hoc subcommittee to review and make a recommendation to the Commission regarding the co-mingling of defense and commercial waste.
This letter also serves to appoint Dr. Allison Macfarlane as the chair of the subcommittee and the membership of the subcommittee as identified in your letter to me dated October 31, 2011.
The purpose of this scientific analysis report, Commercial Spent Nuclear Fuel Igneous Scenario Criticality Evaluation, is to investigate the effects of an igneous intrusion event occurring in the repository on commercial spent nuclear fuel (CSNF) stored in waste packages. This activity supports the Postclosure Criticality Department's development of bounding (design-basis) configurations for loading specifications and the evaluation of features, events, and processes (FEPs) that could lead to waste package criticality.
The purpose of this calculation is to perform intact mode and partially degraded mode criticality evaluations of the Department of Energy's (DOE) Enrico Fermi (EF) Spent Nuclear Fuel (SNF) co-disposed in a 5 Defense High-Level Waste (5-DHLW) Waste Package (WP) and emplaced in a Monitored Geologic Repository (MGR). The criticality evaluations estimate the values of the effective neutron multiplication factor, keff, as a measure of nuclear criticality potential, for the 5- DHLW/DOE SNF WP with intact or partially degraded internal configurations.