Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Keywords
Monitored Retrievable Storage Facility Design Criteria Policy Document - 2nd Draft
Monitored Retrievable Storage Facility Design Criteria Policy Document - 2nd Draft
EQ6 Calculations for Chemical Degradation of PWR LEU and PWR MOX Spent Fuel Waste Packages
EQ6 Calculations for Chemical Degradation of PWR LEU and PWR MOX Spent Fuel Waste Packages
Intact and Degraded Mode Criticality Calculations for the Codisposal of ATR Spent Nuclear Fuel in a Waste Package
Intact and Degraded Mode Criticality Calculations for the Codisposal of ATR Spent Nuclear Fuel in a Waste Package
OECD/NEA Burnup Credit Criticality Benchmark, Analysis of Phase II-B Results: Conceptual PWR Spent Fuel Transportation Cask
OECD/NEA Burnup Credit Criticality Benchmark, Analysis of Phase II-B Results: Conceptual PWR Spent Fuel Transportation Cask
The Likelihood of Criticality Following Disposal of SF/HLW/HEU/Pu
The Likelihood of Criticality Following Disposal of SF/HLW/HEU/Pu
Screening Analysis of Criticality Features, Events, and Processes for License Application
Screening Analysis of Criticality Features, Events, and Processes for License Application
Characteristics of Spent Fuel, High-Level Waste, and Other Radioactive Wastes Which May Require Long-Term Isolation, Rev. 0
Characteristics of Spent Fuel, High-Level Waste, and Other Radioactive Wastes Which May Require Long-Term Isolation, Rev. 0
The purpose of this report, and the information contained in the associated computerized data bases, is to establish the DOE/OCRWM reference characteristics of the radioactive waste materials that may be accepted by DOE for emplacement in the mined geologic disposal system as developed under the Nuclear Waste Policy Act of 1982. This report provides relevant technical data for use by DOE and its supporting contractors and is not intended to be a policy document.
Summary Report of SNF Isotopic Comparisons for the Disposal Criticality Analysis Methodology
Summary Report of SNF Isotopic Comparisons for the Disposal Criticality Analysis Methodology
The "Summary Report of SNF Isotopic Comparisons for the Disposal Criticality Analysis Methodology" contains a summary of the analyses that compare SNF measured isotopic concentrations (radiochemical assays) to calculated SNF isotop~c concentrations (SAS2H module ·orScale4.3). The results of these analyses are used to support the validation of the isotopic models for spent commercial light water reactor (LWR) fuel.
Characteristics of Potential Repository Wastes
Characteristics of Potential Repository Wastes
The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for all spent fuels and high-level wastes (HLW) that will eventually be disposed of in a geologic repository. The purpose of this document, and the information contained in the associated computerized data bases and supporting technical reports, is to provide the technical characteristics of the radioactive waste materials that will (or may) be accepted by DOE for interim storage in an MRS or emplacement in a repository as developed under the Nuclear Waste Policy Act Amendment of 1987.
Summary Report of Commercial Reactor Criticality Data for Quad Cities Unit 2
Summary Report of Commercial Reactor Criticality Data for Quad Cities Unit 2
The Potential of Using Commercial Duel Purpose Canisters for Direct Disposal
The Potential of Using Commercial Duel Purpose Canisters for Direct Disposal
This report evaluates the potential for directly disposing of licensed commercial Dual Purpose
Canisters (DPCs) inside waste package overpacks without reopening. The evaluation considers
the principal features of the DPC designs that have been licensed by the Nuclear Regulatory
Commission (NRC) as these relate to the current designs of waste packages and as they relate to
disposability in the repository. Where DPC features appear to compromise future disposability,
those changes that would improve prospective disposability are identified.
Report on Radioactive Waste Ownership and Management of Long-Term Liabilities in EDRAM Member Countries
Report on Radioactive Waste Ownership and Management of Long-Term Liabilities in EDRAM Member Countries
This report has been prepared by an ad-hoc Working Group (WG) formed by ANDRA (France), NUMO (Japan), NAGRA (Switzerland) and ENRESA (Spain) in May 2003, after the EDRAM meeting held in Valencia to study the situation in the different EDRAM member countries regarding the treatment of radioactive waste ownership and management of long-term liabilities.
A Multiattribute Utility Analysis of Sites Nominated for Characterization for the First Radioactive-Waste Repository--A Decision-Aiding Methodology
A Multiattribute Utility Analysis of Sites Nominated for Characterization for the First Radioactive-Waste Repository--A Decision-Aiding Methodology
The Department of Energy (DOE), pursuant to the Atomic Energy Act of 1954
as amended, the Energy Reorganization Act of 1974, the Department of Energy
Organization Act of 1977, and the Nuclear Waste Policy Act of 1982 (the Act),
has the responsibility to provide for the disposal of high-level radioactive
waste and spent nuclear fuel.* The DOE selected mined geologic repositories
as the preferred means for the disposal of commercially generated high-level
radioactive waste and spent fuel (Federal Register, Vol. 46, p. 26677, May 14,
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay.
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay.
Reversibility and Retrievability in Planning for Geological Disposal of Radioactive Waste-Proceedings of the "R&R" International Conference and Dialogue, December 14-17, 2010, Reims, France
Reversibility and Retrievability in Planning for Geological Disposal of Radioactive Waste-Proceedings of the "R&R" International Conference and Dialogue, December 14-17, 2010, Reims, France
In 2007 the OECD Nuclear Energy Agency (NEA) Radioactive Waste Management Committee
(RWMC) launched a four-year project on the topics of reversibility and retrievability in geological
disposal. The goal of the project studies and activities (www.oecd-nea.org/rwm/rr) was to
acknowledge the range of approaches to reversibility and retrievability (R&R), rather than to
recommend a specific approach, and to provide a basis for reflection rather than to lead towards
Preliminary Transportation, Aging and Disposal Canister System Performance Specification Requirements Rationale, Revision B
Preliminary Transportation, Aging and Disposal Canister System Performance Specification Requirements Rationale, Revision B
The purpose of this document is to provide the requirements rationale for the current version of the Preliminary Transportation, Aging and Disposal Canister System Performance Specification; WMO-TADCS-000001.
Extended Storage and Transportation - Evaluation of Drying Adequacy
Extended Storage and Transportation - Evaluation of Drying Adequacy
The U.S. Nuclear Regulatory Commission (NRC) is evaluating the safety and security of spent nuclear fuel (SNF) stored in dry casks for extended time periods before transportation to a location where the SNF is further processed or permanently disposed.
Used Fuel Disposition U.S. Radioactive Waste Inventory and Characteristics Related to Potential Future Nuclear Energy Systems
Used Fuel Disposition U.S. Radioactive Waste Inventory and Characteristics Related to Potential Future Nuclear Energy Systems
In February, 2011 the Blue Ribbon Commission (BRC) on America’s Nuclear Future requested the Department of Energy
(DOE) to provide a white paper summarizing the quantities and characteristics of potential waste generated by various
nuclear fuel cycles. The BRC request expressed interest in two classes of radioactive wastes:
Existing waste that are or might be destined for a civilian deep geologic repository or equivalent.
Potential future waste, generated by alternative nuclear fuel cycles (e.g. wastes from reprocessing, mixed-oxide
Disposal Criticality Analysis Methodology Topical Report Revision 2
Disposal Criticality Analysis Methodology Topical Report Revision 2
This topical report describes the approach to the risk-informed, performance-based methodology to be used for performing postclosure criticality analyses for waste forms in the Monitored Geologic Repository at Yucca Mountain, Nevada. The risk-informed, performance-based methodology will be used during the licensing process to demonstrate how the potential for postclosure criticality will be limited and to demonstrate that public health and safety are protected against postclosure criticality.
The Potential of Using Commercial Dual Purpose Canisters for Direct Disposal
The Potential of Using Commercial Dual Purpose Canisters for Direct Disposal
This report evaluates the potential for directly disposing of licensed commercial Dual Purpose
Canisters (DPCs) inside waste package overpacks without reopening. The evaluation considers
the principal features of the DPC designs that have been licensed by the Nuclear Regulatory
Commission (NRC) as these relate to thedesigns of waste packages and as they relate to
disposability in a repository in unsaturated volcanic tuff. Where DPC features appear to compromise future disposability in an unsaturated tuff (e.g., Yucca Mountain) repository
Stakeholder Confidence in Radioactive Waste Management: An Annotated Glossary of Key Terms
Stakeholder Confidence in Radioactive Waste Management: An Annotated Glossary of Key Terms
The OECD Nuclear Energy Agency (NEA) Forum on Stakeholder Confidence (FSC) acts as a centre for informed exchange of knowledge and experience regarding stakeholder interaction and public participation in radioactive waste management. It promotes an open discussion among members and stakeholders, across institutional boundaries, and between technical and non-technical actors, in an atmosphere of trust and mutual respect. As such, the FSC is, first and foremost, a learning organisation.
Options for Management of Spent Fuel and Radioactive Waste for Countries Developing New Nuclear Power Programmes
Options for Management of Spent Fuel and Radioactive Waste for Countries Developing New Nuclear Power Programmes
The IAEA has published guidance on particular elements of radioactive waste and spent fuel management,
such as establishing nuclear technical and regulatory infrastructure, relevant financing schemes, national policy
and strategies, multinational approaches and other aspects linked to building nuclear power plants. The present
publication is intended to provide a concise summary of key issues related to the development of a sound radioactive
waste and spent nuclear fuel management system. It is designed to brief countries with small or newly established
DISPOSABILITY OF LOADED U.S. DUAL-PURPOSE CANISTERS FROM A CRITICALITY STANDPOINT
DISPOSABILITY OF LOADED U.S. DUAL-PURPOSE CANISTERS FROM A CRITICALITY STANDPOINT
This paper assesses the feasibility of direct disposal of loaded dual-purpose canisters (DPCs) from a criticality standpoint by evaluating attributes that could be credited to justify that the DPCs remain subcritical over a repository performance period. This study investigates the uncredited criticality margin associated with actual fuel loading compared with the regulatory licensing design basis limits and evaluates the percentage of DPCs that remain subcritical solely based on the uncredited criticality margin.