Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Country
Keywords
Overview of High-Level Nuclear Waste Materials Transportation: Processes, Regulations, Experience and Outlook in the U.S.
Overview of High-Level Nuclear Waste Materials Transportation: Processes, Regulations, Experience and Outlook in the U.S.
Every year, more than 300 million packages of hazardous material are shipped in the
United States (U.S.). Most of the hazardous material shipped – about 97 percent – is
flammable, explosive, corrosive or poisonous. About 1 percent – three million packages –
of the hazardous materials shipped annually contains radioactive material, most of them
from medical and industrial applications. [DOT 1998b]
Spent nuclear fuel comprises a very small fraction of the hazardous materials packages
Co-Chair Letter to Sec. Chu
Co-Chair Letter to Sec. Chu
Dear Secretary Chu:
At the direction of the President, you charged the Blue Ribbon Commission on America’s
Nuclear Future with reviewing policies for managing the back end of the nuclear fuel
cycle and recommending a new plan. We thank you for choosing us to serve as Co-
Chairmen of the Commission and for selecting the talented and dedicated set of
Commissioners with whom we serve.
We have sought to ensure that our review is comprehensive, open and inclusive. The
Commission and its subcommittees have heard from hundreds of individuals and
Recommendations on the Credit for Cooling Time in PWR Burnup Credit Analyses
Recommendations on the Credit for Cooling Time in PWR Burnup Credit Analyses
The U.S. Nuclear Regulatory Commission's guidance on burnup credit for pressurized-water-reactor (PWR) spent nuclear fuel (SNF) recommends that analyses be based on a cooling time of five years. This recommendation eliminates assemblies with shorter cooling times from cask loading and limits the allowable credit for reactivity reduction associated with cooling time. This report examines reactivity behavior as a function of cooling time to assess the possibility of expanding the current cooling time recommendation for SNF storage and transportation.
slides - Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste
slides - Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Screening Analysis of Criticality Features, Events, and Processes for License Application
Screening Analysis of Criticality Features, Events, and Processes for License Application
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Criticality (keff) Predictions
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Criticality (keff) Predictions
Taking credit for the reduced reactivity of spent nuclear fuel (SNF) in criticality analyses is referred to as burnup credit (BUC). Criticality safety evaluations require validation of the computational methods with critical experiments that are as similar as possible to the safety analysis models, and for which the keff values are known. This poses a challenge for validation of BUC criticality analyses, as critical experiments with actinide and fission product (FP)
CSNF Loading Curve Sensitivity Analysis
CSNF Loading Curve Sensitivity Analysis
The purpose of this scientific analysis report, CSNF Loading Curve Sensitivity Analysis, is to establish the required minimum burnup as a function of initial enrichment for both pressurized water reactor (PWR) and boiling water reactor (BWR) commercial spent nuclear fuel (CSNF) that would allow permanent disposal of these waste forms in the geologic repository at Yucca Mountain. The relationship between the required minimum burnup and fuel assembly initial enrichment forms a loading curve.
DOE SNF Phase I and II Summary Report
DOE SNF Phase I and II Summary Report
There are more than 250 forms of U.S. Department of Energy (DOE)owned spent nuclear fuel (SNF). Due to the variety of the spent nuclear fuel, the National Spent Nuclear Fuel Program (NSNFP) has designated nine representative fuel groups for disposal criticality analyses based on fuel matrix, primary fissile isotope, and enrichment. For each fuel group, a fuel type that represents the characteristics of all fuels in that group has been selected for detailed analysis.
Overview of the Section 180(c) Program: History, Lessons Learned, and Potential Next Steps
Overview of the Section 180(c) Program: History, Lessons Learned, and Potential Next Steps
The U.S. Department of Energy’s (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible, under the Nuclear Waste Policy Act of 1982, for the transportation of spent nuclear fuel and high-level radioactive waste from point of origin to destination at a federal storage or disposal facility. Section 180(c), written into the Nuclear Waste Policy Act Amendments of 1987, requires OCRWM to prepare public safety officials along the routes for these shipments.
Going the Distance? The Safe Transport of Spent Nuclear Fuel and High-Level Radioactive Waste in the United States - Summary
Going the Distance? The Safe Transport of Spent Nuclear Fuel and High-Level Radioactive Waste in the United States - Summary
This new report from the National Research Council’s Nuclear and Radiation Studies Board (NRSB) and the Transportation Research Board reviews the risks and technical and societal concerns for the transport of spent nuclear fuel and high-level radioactive waste in the United States. Shipments are expected to increase as the U.S. Department of Energy opens a repository for spent fuel and high-level waste at Yucca Mountain, and the commercial nuclear industry considers constructing a facility in Utah for temporary storage of spent fuel from some of its nuclear waste plants.
BRC Co-Chair Letter to The Honorable Fred Upton, Chairman, U.S. House Energy and Commerce Committee and The Honorable John Shimkus, Chairman, U.S. House Energy and Commerce Committee, Subcommittee on Environment and the Economy
BRC Co-Chair Letter to The Honorable Fred Upton, Chairman, U.S. House Energy and Commerce Committee and The Honorable John Shimkus, Chairman, U.S. House Energy and Commerce Committee, Subcommittee on Environment and the Economy
Dear Representatives Upton and Shimkus,
At the direction of the President, the Secretary of Energy established the Blue Ribbon
Commission on America’s Nuclear Future and charged it with reviewing policies for
managing the back end of the nuclear fuel cycle. We are serving as the Co-Chairmen of
the Commission and have taken note of your recent comments about the Commission’s
work.
Your comments echo those we have heard from several members of Congress and from
people across the country who believe the United States should not abandon the
SAS2H Generated Isotopic Concentrations for B&W 15xl5 PWR Assembly (SCPB: N/A)
SAS2H Generated Isotopic Concentrations for B&W 15xl5 PWR Assembly (SCPB: N/A)
This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide pressurized water reactor (PWR) isotopic composition data as a function of time for use in criticality analyses. The objectives of this evaluation are to generate burnup and decay dependant isotopic inventories and to provide these inventories in a form which can easily be utilized in subsequent criticality calculations.
OECD/NEA Burnup Credit Criticality Benchmarks Phase IIIB: Burnup Calculations of BWR Fuel Assemblies for Storage and Transport
OECD/NEA Burnup Credit Criticality Benchmarks Phase IIIB: Burnup Calculations of BWR Fuel Assemblies for Storage and Transport
The report describes the final results of the Phase IIIB Benchmark conducted by the
Expert Group on Burnup Credit Criticality Safety under the auspices of the Nuclear Energy
Agency (NEA) of the Organization for Economic Cooperation and Development (OECD).
The Benchmark was intended to compare the predictability of current computer code and
data library combinations for the atomic number densities of an irradiated BWR fuel
assembly model. The fuel assembly was irradiated under specific power of 25.6 MW/tHM
Public Beliefs, Concerns and Preferences Regarding the Management of Used Nuclear Fuel and High Level Radioactive Waste
Public Beliefs, Concerns and Preferences Regarding the Management of Used Nuclear Fuel and High Level Radioactive Waste
US policy for management of used nuclear fuel (UNF) and high level radioactive wastes (HLRW) is at a crossroads, and the success of new policy directions will depend in part on broad public acceptance and support. In this paper I provide an overview of the evidence concerning the beliefs and concerns of members of the American public regarding UNF and HLNW. I also characterize the evidence on American’s policy preferences for management of these materials.
Key Issues Associated with Interim Storage of Used Nuclear Fuel
Key Issues Associated with Interim Storage of Used Nuclear Fuel
The issue of interim storage of used (spent)1 fuel is dependent on a number of key factors, some
of which are not known at this time but are the subject of this study. The first is whether or not
the Yucca Mountain Project continues or is cancelled such that it may be able to receive spent
fuel from existing and decommissioned nuclear power stations. The second is whether the United
States will pursue a policy of reprocessing and recycling nuclear fuel. The reprocessing and
Internationalization of the Nuclear Fuel Cycle
Internationalization of the Nuclear Fuel Cycle
Following the proposals for nuclear fuel assurance of International Atomic Energy
Agency (IAEA) Director General Mohamed El Baradei, former Russian President Vladimir V.
Putin, and U.S. President George W. Bush, joint committees of the Russian Academy of
Sciences (RAS) and the U.S. National Academies (NAS) were formed to address these and other
fuel assurance concepts and their links to nonproliferation goals. The joint committees also
addressed many technology issues relating to the fuel assurance concepts. This report provides
Summary Report of Commercial Reactor Criticality Data for Crystal River Unit 3
Summary Report of Commercial Reactor Criticality Data for Crystal River Unit 3
The "Summary Report of Commercial Reactor Criticality Data for Crystal River Unit 3" contains the detailed information necessary to perform commercial reactor criticality (CRC) analyses for the Crystal River Unit 3 (CR3) reactor.
Review of DOE's Nuclear Energy Research and Development Program - Summary
Review of DOE's Nuclear Energy Research and Development Program - Summary
There has been a substantial resurgence of interest in nuclear power in the United States
over the past few years. One consequence has been a rapid growth in the research
budget of DOE’s Office of Nuclear Energy (NE). In light of this growth, the Office of
Management and Budget included within the FY2006 budget request a study by the
National Academy of Sciences to review the NE research programs and recommend
priorities among those programs. The programs to be evaluated were: Nuclear Power
February 16, 2011 - Letter from Secretary Chu to the BRC, February 11, 2011
February 16, 2011 - Letter from Secretary Chu to the BRC, February 11, 2011
Dear Co-Chairs Hamilton and Scowcroft:
The Obama Administration believes that nuclear energy has an important role to playas America moves to a clean energy future. One of my goals as Secretary of Energy is to help restart America's nuclear industry, creating thousands of new jobs and new export opportunities for the United States while producing the carbon free energy we need to power America's economy.
Summary Report of Commercial Reactor Critical Analyses Performed for the Disposal Criticality Analysis Methodology
Summary Report of Commercial Reactor Critical Analyses Performed for the Disposal Criticality Analysis Methodology
The "Summary Report of Commercial Reactor Critical Analyses Perfonned for the Disposal Criticality Analysis Methodology" contains a summary of the commercial reactor critical (CRC) analyses used to support the validation of the criticality models for spent commercial light water reactor (LWR) fuel.
Calculation of Upper Subcritical Limits for Nuclear Criticality in a Repository
Calculation of Upper Subcritical Limits for Nuclear Criticality in a Repository
The purpose of this document is to present the methodology to be used for development of the Subcritical Limit (SL) for post closure conditions for the Yucca Mountain repository. The SL is a value based on a set of benchmark criticality multiplier, keff> results that are outputs of the MCNP calculation method. This SL accounts for calculational biases and associated uncertainties resulting from the use of MCNP as the method of assessing kerr·
Management of Commercial High Level and Transuranium Contaminated Radioactive Waste
Management of Commercial High Level and Transuranium Contaminated Radioactive Waste
This report summarizes the results of EPA's review of the AEC
draft environmental statement, "Management of Commercial High-Level
and Transuranium-Contaminated Radioactive Waste" (WASH-1539). The
means by which high-level and long-lived radioactive wastes are
managed constitutes one of the most important questions upon which
the public acceptability of nuclear power, with its social and economic
benefits, will be determined. While the generation of power by
nuclear means offers certain benefits from the environmental viewpoint,
Radioactive Waste Repositories and Host Regions: Envisaging the Future Together
Radioactive Waste Repositories and Host Regions: Envisaging the Future Together
The 7th Forum on Stakeholder Confidence (FSC) National Workshop and Community Visit was held on 7-9 April 2009 in Bar-le-Duc, France.
Legal Background and Questions Concerning the Federal Government’s Contractual Obligations Under the “Standard Contracts” with “Utilities”
Legal Background and Questions Concerning the Federal Government’s Contractual Obligations Under the “Standard Contracts” with “Utilities”
This Memorandum analyzes issues related to the Standard Contract between the U.S. Department of Energy (“DOE”) and the “utilities.” Beginning with a discussion of specific provisions of the Standard Contract, this Memorandum then analyzes the status of lawsuits involving the Standard Contract, reviews issues related to on-site storage of spent fuel and HLW, and assesses the prospects for modifying the current waste-disposal regime through Federal legislation or amendments to the Standard Contract.