Burnup Credit Bibliographies
Burnup Credit Bibliographies
The attached documents are an extensive list of references relevant to burnup credit criticality analysis. Some of the references may be available within the CURIE document collection.
The attached documents are an extensive list of references relevant to burnup credit criticality analysis. Some of the references may be available within the CURIE document collection.
The objective of these calculations is to perform intact and degraded mode criticality evaluations of the Department of Energy's (DOE) Three Mile Island- Unit 2 (TMI-2) spent nuclear fuel (SNF) in canisters. This analysis evaluates codisposal in a 5-Defense High-Level Waste (5-DHLW/DOE SNF) Long Waste Package (Civilian Radioactive Waste Management System Management and Operating Contractor [CRWMS M&O] 2000b, Attachment V), which is to be placed in a potential monitored geologic repository (MGR).
The Disposal Subcommittee of the Blue Ribbon Commission on America’s Nuclear Future (BRC) addressed a wide-ranging set of issues, all bearing directly on the central question: “How can the United States go about establishing one or more disposal sites for high-level nuclear wastes in a manner and within a timeframe that is technically, socially, economically, and politically acceptable?”
The purpose of this analysis is to identify, extract, and reformat weather (meteorological) data that is appropriate for use as input to an infiltration model, within the Yucca Mountain region. The analysis uses relevant meteorological data (e.g., precipitation and temperature) from source stations, and reformats or converts the data into a form suitable for the generation of meteorological conditions for a 10,000-year future climate in the Yucca Mountain region.
The purpose of this calculation is to apply the process described in the Preclosure Criticality Analysis Process Report (Ref. 2.2.12) to establish the bias for keff calculations performed for commercial nuclear fuels using the MCNP code system. This bias will be used in criticality safety analyses as part of the basis for establishing the upper subcritical limit (USL). This calculation also defines the range of applicability (ROA) for which the bias may be used directly without need to consider additional penalties on the USL.
NRC/NEI, January 24, 2014 Public Meeting Presentations
This evaluation investigates the potential benefits of separating the transuranic elements from spent reactor fuel before it is disposed of in geologic repositories. It addresses the question: Would the benefits to radioactive waste disposal justify both processing the spent fuel and deploying liquid metal reactors (LMRs) to transmute the separated transuranics?
http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=NP-7…
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
The purpose of this calculation is to apply the process described in the TDR-DS0-NU-000001 Rev. 02, Preclosure Criticality Analysis Process Report (Ref. 2.2.25) to aid in establishing design and operational criteria important to criticality safety and to identify potential control parameters and their limits important to the criticality safety of commercial spent nuclear fuel (CSNF) handling operations in the Wet Handling Facility (WHF)
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
This analysis provides information necessary for total system performance assessment (TSPA) for the license application (LA) to include the excess U.S. Department of Energy (DOE) plutonium in the form of mixed oxide (MOX) spent nuclear fuel and lanthanide borosilicate (LaBS) glass. This information includes the additional radionuclide inventory due to MOX spent nuclear fuel and LaBS glass and the analysis that shows that the TSPA models for commercial spent nuclear fuel (CSNF) and high-level waste (HLW) degradation are appropriate for MOX spent nuclear fuel and LaBS glass, respectively.
The purpose of this scientific analysis is to document the results and interpretations of field experiments that test and validate conceptual flow and radionuclide transport models in the saturated zone (SZ) near Yucca Mountain, Nevada. The test interpretations provide estimates of flow and transport parameters used in the development of parameter distributions for total system performance assessment (TSPA) calculations.
The purpose of this calculation is to document the McGuire Unit 1 pressurized water reactor (PWR) reactivity calculations performed as part of the commercial reactor critical (CRC) evaluation program. CRC evaluation reactivity calculations are performed at a number of statepoints, representing reactor start-up critical conditions at either beginning of life (BOL), beginning of cycle (BOC), or mid-cycle when the reactor resumed operation after a shutdown.
After more than 20 years of commercial nuclear power, the Federal Government has yet to develop a broadly supported policy for fulfilling its legal responsibility for the final isolation of high-level radioactive waste. OTA's study concludes that until such a policy is adopted in law, there is a substantial risk that the false starts, shifts of policy, and fluctuating support that have plagued the final isolation program in the past will continue.
The purpose of this report, and the information contained in the associated computerized data bases, is to establish the DOE/OCRWM reference characteristics of the radioactive waste materials that may be accepted by DOE for emplacement in the mined geologic disposal system as developed under the Nuclear Waste Policy Act of 1982. This report provides relevant technical data for use by DOE and its supporting contractors and is not intended to be a policy document.
The purpose of this calculation is to develop an estimate of the isotopic content as a function of time for mixed oxide (MOX) spent nuclear fuel (SNF) assemblies in a Westinghouse pressurized water reactor (PWR). These data will be used as source data for criticality, thermal, and radiation shielding evaluations of waste package (WP) designs for MOX assemblies in the Monitored Geologic Repository (MGR).
The U.S. Department of Energy (DOE) submitted to the Nuclear Regulatory Commission (NRC) the Dry Transfer System (DTS) Topical Safety Analysis Report (TSAR) on
This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide an assessment of the present waste package design from a criticality risk standpoint. The specific objectives of this initial analysis are to:
1. Establish a process for determining the probability of waste package criticality as a function of time (in terms of a cumulative distribution function, probability distribution function, or expected number of criticalities in a specified time interval) for various waste package concepts;
In the November 1989 Report to Congress on Reassessment of the Civilian
Radioactive Waste Management Program (DOE/RW-0247), the Secretary of Energy
announced an initiative for developing a monitored retrievable storage (MRS) facility
that is to start spent-fuel acceptance in 1998. This facility, which will be licensed by
the U.S. Nuclear Regulatory Commission (NRC), will receive spent fuel from
commercial nuclear power plants and provide a limited amount of storage for this
The "Summary Report of SNF Isotopic Comparisons for the Disposal Criticality Analysis Methodology" contains a summary of the analyses that compare SNF measured isotopic concentrations (radiochemical assays) to calculated SNF isotop~c concentrations (SAS2H module ·orScale4.3). The results of these analyses are used to support the validation of the isotopic models for spent commercial light water reactor (LWR) fuel.
Background To determine whether current and former construction workers are at
significant risk for occupational illnesses from work at the Department of Energy’s (DOE)
nuclear weapons facilities, screening programs were undertaken at the Hanford Nuclear
Reservation, Oak Ridge Reservation, and the Savannah River Site.
The "Summary Report of Commercial Reactor Criticality Data for Catawba Unit 1" contains the detailed information necessary to perform commercial reactor criticality (CRC) analyses for the Catawba Unit 1 reactor.
An Account of the Programs of Federal Agencies and Events That Have Led to the Selection of a Potential Site for a Geologic Repository for High-Level Radioactive Waste
This report provides details of dry storage cask systems and contents in U.S. for commercial light water
reactor fuel. Section 2 contains details on the canisters used to store approximately 86% of assemblies in
dry storage in the U.S. Transport cask details for bare fuels, dual purpose casks and canister transport
casks are included in Section 3. Section 4 details the inventory of those shutdown sites without any
operating reactors. Information includes the cask type deployed, transport license and status as well as
This validation report supports the issuance of Version 6.0 of the Total System Model (TSM, BSC 2007a) that is described in the TSM User Manual (UM, BSC 2007b) and the TSM Preprocessor (TSMPP) User Manual (BSC 2007c). This report assumes the reader has detailed, working knowledge of the TSM functions and the Civilian Radioactive Waste Management System (CRWMS) operations. This report is based on an earlier document, Validation Report: Total System Model Version 5.0 Report Generators (BSC 2007d) that supported TSM Version 5.0.