slides - Transportation Infrastructure
slides - Transportation Infrastructure
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
This “Technical Evaluation Report on the Content of the U.S. Department of Energy’s Yucca Mountain License Application; Postclosure Volume: Repository Safety After Permanent Closure” (TER Postclosure Volume) presents information on the NRC staff’s review of DOE’s Safety Analysis Report (SAR), provided on June 3, 2008, as updated by DOE on February 19, 2009. The NRC staff also reviewed information DOE provided in response to NRC staff’s requests for additional information and other information that DOE provided related to the SAR.
To establish a new organization to manage nuclear waste, provide a consensual process for siting nuclear waste facilities, ensure adequate funding for managing nuclear waste, and for other purposes.
The purpose of this calculation is to document the LaSalle Unit 1 boiling water reactor (BWR) fuel depletion calculations performed as part of the commercial reactor critical (CRC) evaluation program. The CRC evaluations constitute benchmark calculations that support the development and validation of the neutronics models used for criticality analyses involving commercial spent nuclear fuel in a geologic repository. This calculation incorporates control blade effects and minor variations in the SAS2H assembly modeling.
This report defines issues that need to be addressed by a development program recently initiated to establish the viability of a transuranic program recently initiated to establish the viability of a transuranic burning concept application that would achieve a substantial delay to the need date for a second geologic repository. The visualized transuranic burning concept application is one in which spent fuel created after a date in the 2010 timeframe or later would be processed and the separated plutonium used to start up liquid metal reactors.
The Disposal Criticality Analysis Methodology Topical Report (YMP 2003) presents the methodology for evaluating potential criticality situations in the monitored geologic repository. As stated in the referenced Topical Report, the detailed methodology for performing the disposal criticality analyses will be documented in model reports. Many of the models developed in support of the Topical Report differ from the definition of models as given in the Office of Civilian Radioactive Waste Management procedure AP-SIII.10Q, Models, in that they are procedural, rather than mathematical.
In response to the remand of the U.S. Court of Appeals for the District of Columbia Circuit (Minnesota v. NRC, 602 F.2d 412 (1979)), and as a continuation of previous proceedings conducted in this area by NRC (44 Fed. Reg. 61,372), the Commission initiated a generic rulemaking proceeding on October 25, 1979.
This analysis is prepared by the Mined Geologic Disposal System (MODS) Waste Package Development (WPD) department to provide an evaluation of the criticality potential within a waste package having some or all of its contents degraded by corrosion and removal of neutron absorbers. This analysis is also intended to provide an estimate of the consequences of any internal criticality, particularly in terms of any increase in radionuclide inventory. These consequence estimates will be used as part of the WPD input to the Total System Performance Assessment.
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
The purpose of this calculation is to perform the same reactivity calculations as performed in Reference 7.1 and Reference 7.2 for a set of Laboratory Critical Experiments (LCE) except to change some of the cross section libraries as specified here, and to perform sixteen additional calculations for U233 LCEs.
As part of the plutonium waste form development and down-select process, repository analyses have been conducted to evaluate the long-term performance of these forms for repository acceptance. Intact and degraded mode criticality analysis of the mixed oxide (MOX) spent fuel is presented in Volume I, while Volume II presents the evaluations of the waste form containing plutonium immobilized in a ceramic matrix.
Consistent with the mandate issued by the United States Court of Appeals for the District of Columbia Circuit in National Association of Regulatory Utility Commissioners v. United States Department of Energy, (Nos. 11-1066 and 11-1068; D.C. Cir. 2013), and notwithstanding the absence of the determination required to be made pursuant to the Nuclear Waste Policy
Act of 1982 (NWPA), as amended, 42 U.S.C. 10222(a)(4), I hereby propose, subject to any
The purpose of this engineering calculation is to document the MCNP4B2LVevaluations of Laboratory Critical Experiments (LCEs) performed as part of the Disposal Criticality Analysis Methodology program. LCE evaluations documented in this report were performed for 22 different cases with varied design parameters. Some of these LCEs (10) are documented in existing references (Ref. 7.1 and 7.2), but were re-run for this calculation file using more neutron histories.
The success of the Civilian Radioactive Waste Management Program of the U.S.
Department of Energy (DOE) is critical to U.S. ability to manage and dispose of
nuclear waste safely--and to the reestablishment of confidence in the nuclear energy
option in the United States. The program must conform with all applicable standards
and, in fact, set the example for a national policy on the safe disposal of radioactive
waste.
The Secretary of Energy has recently completed an extensive review of the
By the end of this century, the United States plans to begin operating the first geologic repository for the permanent disposal of commercial spent nuclear fuel and high-level radioactive Waste. Public Law 97-425, the Nuclear waste Policy Act of 1982 (the Act), specifies the process for selecting a repository site, and constructing, operating, closing, and decommissioning the repository.
The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for all spent fuels and high-level wastes (HLW) that will eventually be disposed of in a geologic repository. The purpose of this document, and the information contained in the associated computerized data bases and supporting technical reports, is to provide the technical characteristics of the radioactive waste materials that will (or may) be accepted by DOE for interim storage in an MRS or emplacement in a repository as developed under the Nuclear Waste Policy Act Amendment of 1987.
The main question before the Transportation and Storage Subcommittee was whether the United States
should change its approach to storing and transporting spent nuclear fuel (SNF) and high-level
radioactive waste (HLW) while one or more permanent disposal facilities are established.
To answer this question and to develop specific recommendations and options for consideration by the
full Commission, the Subcommittee held multiple meetings and deliberative sessions, visited several
This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development (WPD) department to provide a probabilistic evaluation of the potential for criticality of fissile material which has been transported from a geologic repository containing breached waste packages of commercial spent nuclear fuel (SNF). This analysis is part of a continuing investigation of the probability of criticality resulting from the emplacement of spent nuclear fuel in a geologic repository.
The Civilian Radioactive Waste Management System (CRWMS) Total System Model (TSM) is
a planning tool that estimates the logistic and cost impacts of various operational assumptions in
accepting radioactive wastes. Waste forms currently tracked are commercial spent nuclear fuel
(CSNF), Department of Energy (DOE) Spent Nuclear Fuel (DOE SNF), and High-Level
(radioactive) Waste (HLW). The TSM and associated programs analyze and simulate the actions
for waste acceptance from discharge until emplacement.
Dear Mr. President:
At your direction, the Secretary of Energy established the Blue Ribbon Commission on
America’s Nuclear Future to review policies for managing the back end of the nuclear
fuel cycle and recommend a new strategy. We are pleased to be serving as Co‐
Chairmen of the Commission, and we are writing to you to highlight an important action
we strongly believe should be reflected in your Fiscal Year 2013 baseline budget
projections.
In our draft report to the Secretary, issued in July of this year, the Commission
This report presents the results of computer code benchmark simulations against spent fuel radiochemical assay
measurements from the Kansai Electric Ltd. Takahama-3 reactor published by the Japan Atomic Energy
Research Institute. Takahama-3 is a pressurized-water reactor that operates with a 17 × 17 fuel-assembly design.
Spent fuel samples were obtained from assemblies operated for 2 and 3 cycles and achieved a maximum burnup
of 47 GWd/MTU. Radiochemical analyses were performed on two rods having an initial enrichment of
This model report documents the abstraction of drift seepage, conducted to provide seepage relevant parameters and their probability distributions for use in Total System Performance Assessment for License Application (TSPA-LA). Drift seepage refers to the flow of liquid water into waste emplacement drifts.
Spent Fuel Project Office Interim Staff Guidance - 8