slides - Calvert Cliffs ISFSI License Renewal and Expansion
slides - Calvert Cliffs ISFSI License Renewal and Expansion
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
The "Summary Report of Commercial Reactor Criticality Data for Sequoyah Unit 2" contains the detailed information necessary to perform commercial reactor criticality (CRC) analyses for the Sequoyah Unit 2 reactor.
The Nuclear Waste Policy Act of 1982, as amended, established a statutory basis
for managing the nation’s civilian (or commercially produced) spent nuclear
fuel. The law established a process for siting, developing, licensing, and constructing
an underground repository for the permanent disposal of that waste.
Utilities were given the primary responsibility for storing spent fuel until it is
accepted by the Department of Energy (DOE) for disposal at a repository —
originally expected to begin operating in 1998. Since then, however, the repository
At the request of the U.S. Congress, the National Academies assessed the safety and
security of spent nuclear fuel stored in pools and dry casks at commercial nuclear power
plants in the United States. The public report can be viewed on the National Academies
Press website at http://books.nap.edu/catalog/11263.html.
The Monitored Geologic Repository (MGR) Waste Package Operations (WPO) of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Emico Fermi Atomic Power Plant (Ref. 1). The Fermi fuel has been considered for disposal at the potential Yucca Mountain site.
The purpose of these calculations is to characterize the criticality safety concerns for the storage of Fast Flux Test Facility (FFTF) nuclear fuel in a Department of Energy spent nuclear fuel (DOE SNF) canister in a co-disposal waste package. These results will be used to support the analysis that will be done to demonstrate concept viability related to use in the Monitored Geologic Repository (MGR) environment.
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide an assessment of the present waste package design from a criticality risk standpoint. The specific objectives of this initial analysis are to:
1. Establish a process for determining the probability of waste package criticality as a function of time (in terms of a cumulative distribution function, probability distribution function, or expected number of criticalities in a specified time interval) for various waste package concepts;
The purpose of this calculation is to perform a parametric study to determine the effects of fission product leaching, assembly collapse, and iron oxide loss (Me203) on the reactivity of a waste package (WP) containing mixed oxide (MOX) spent nuclear fuel (SNF). Previous calculations (CRWMS M&O 1998a) have shown that the criticality control features of the WP are adequate to prevent criticality of a flooded WP for all the enrichment/ burnup pairs expected for the MOX SNF.
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
The Nuclear Waste Policy Act of 1982 (the Act), established a
step-by-step process for the siting of the nation's first repository for
high-level radioactive waste and spent fuel. The Act gave the Department of
Energy (DOE) the primary responsibility for conducting this siting process.
The first step in the process laid out in the Act was the development by
the DOE, with the concurrence of the Nuclear Regulatory Commission (NRC), of
general guidelines to be used by the Secretary of the DOE (the Secretary) in
The Disposal Criticality Analysis Methodology Topical Reporta prescribes an approach to the methodology for performing postclosure criticality analyses within the monitored geologic repository at Yucca Mountain, Nevada. An essential component of the methodology is the Configuration Generator Model for In-Package Criticality that provides a tool to evaluate the probabilities of degraded configurations achieving a critical state.
The purpose of this document is to provide the requirements rationale for the current version of the Preliminary Transportation, Aging and Disposal Canister System Performance Specification; WMO-TADCS-000001.
The purpose of this report is to document calculations of the number of waste packages that could be damaged in a potential future igneous event intersecting a repository at YuccaMountain. The analyses include disruption from an igneous intrusion and from an igneous eruption. The analyses also support the evaluation of the potential consequences from a future event as part of the total system performance assessment (TSPA) for the license application for the Yucca Mountain Project.
The purpose of this calculation is to perform a parametric study to determine the effects of fission product leaching, assembly collapse, and iron oxide loss on the reactivity of a waste package containing mixed oxide spent nuclear fuel. Previous calculations (CRWMS M&O 1998a) have shown that the criticality control features of the waste package are adequate to prevent criticality of a flooded WP for all the enrichment/burnup pairs expected for the MOX SNF.
The benefits of burnup credit and the technical issues associated with utilizing burnup credit in spent
nuclear fuel (SNF) casks have been studied in the United States for almost two decades. The issuance of the
U.S. Nuclear Regulatory Commission (NRC) staff guidance for actinide-only burnup credit in 2002 was a
significant step toward providing a regulatory framework for using burnup credit in transport casks. However,
adherence to the current regulatory guidance (e.g., limit credit to actinides) enables only about 30% of the existing
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
The validity of the computation of pressurized-water-reactor (PWR) spent fuel isotopic
composition by the SCALE system depletion analysis was assessed using data presented in the report.
Radiochemical measurements and SCALE/SAS2H computations of depleted fuel isotopics were
compared with 19 benchmark-problem samples from Calvert Cliffs Unit 1, H. B. Robinson Unit 2,
and Obrigheim PWRs. Even though not exhaustive in scope, the validation included comparison of
predicted and measured concentrations for 14 actinides and 37 fission and activation products.
Gentlemen,
In accordance with the charter of the Blue Ribbon Commission on America's Nuclear Future and as the Secretary's designee, I approve your request to establish an ad hoc subcommittee to review and make a recommendation to the Commission regarding the co-mingling of defense and commercial waste.
This letter also serves to appoint Dr. Allison Macfarlane as the chair of the subcommittee and the membership of the subcommittee as identified in your letter to me dated October 31, 2011.
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
The purpose of this scientific analysis report, Commercial Spent Nuclear Fuel Igneous Scenario Criticality Evaluation, is to investigate the effects of an igneous intrusion event occurring in the repository on commercial spent nuclear fuel (CSNF) stored in waste packages. This activity supports the Postclosure Criticality Department's development of bounding (design-basis) configurations for loading specifications and the evaluation of features, events, and processes (FEPs) that could lead to waste package criticality.
The purpose of this calculation is to perform intact mode and partially degraded mode criticality evaluations of the Department of Energy's (DOE) Enrico Fermi (EF) Spent Nuclear Fuel (SNF) co-disposed in a 5 Defense High-Level Waste (5-DHLW) Waste Package (WP) and emplaced in a Monitored Geologic Repository (MGR). The criticality evaluations estimate the values of the effective neutron multiplication factor, keff, as a measure of nuclear criticality potential, for the 5- DHLW/DOE SNF WP with intact or partially degraded internal configurations.
This report presents the analysis and conclusions with respect to disposal criticality for canisters containing aluminum-based fuels from research reactors. The analysis has been divided into three phases. Phase I, dealt with breached and flooded waste packages containing relatively intact canisters and intact internal (basket) structures; Phase II, the subject of this report, covers the degradation of the spent nuclear fuel (SNF) and structures internal to the codisposal waste package including high level waste (HLW), canisters, and criticality control material.
Thep purpose of this calculation is to perform degraded mode criticality evaluations of plutonium disposed in a ceramic waste form and emplaced in a Monitored geologic Repository (MGR). A 5 Defense High-Level Waste (DHLW) Canister Waste Package (WP) design, incorporating the can-in-canister concept for plutonium immobilization is considered in this calculation. Each HLW glass pour canister contains 7 tubes. Each tube contains 4 cans, with 20 ceramic disks (immobilized plutonium) in each.